Use of a modified ring-switching strategy to synthesise the glutamate antagonist (2S)-2-amino-3-(2,4-dioxo-1,2,3,4-tetra-hydropyrimidin-5-yl)propionate and related compounds with two chiral centres ${ }^{1}$

Andrew Dinsmore, \dagger Paul M. Doyle \ddagger and Douglas W. Young *
Sussex Centre for Biomolecular Design and Drug Development, University of Sussex, Falmer, Brighton, UK BNI 9QJ

Received (in Cambridge, UK) 26th October 2001, Accepted 27th November 2001
First published as an Advance Article on the web 18th December 2001
(2S)-2-Amino-3-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)propionic acid 8, an isomer of the natural product willardiine 7 , was synthesised by treatment of the pyroglutamate urea 19 with mild base followed by deprotection in a two-step modification of our 'ring-switching' approach to the synthesis of glutamate antagonists. Use of this twostep strategy has allowed us to synthesise l-alanine derivatives, which are β-substituted by a reduced pyrimidinedione which contains a second chiral centre. In one case, the antagonist activity at metabotropic glutamate receptors of two diastereoisomers showed little difference.

Excitatory glutamate receptors in the central nervous system have been classified into various ionotropic and metabotropic sub-types and these have long been identified as targets for therapeutic intervention in a variety of illnesses, including Alzheimer's disease, ${ }^{2}$ epilepsy ${ }^{3}$ and ischaemia. ${ }^{4}$ L-Alanine derivatives substituted at the β-carbon with a heterocyclic ring have been shown to be of particular interest in this context ${ }^{5}$ and we recently devised a novel 'ring-switching' strategy to allow the versatile synthesis of homochiral compounds with structures typical of glutamate agonists and antagonists. ${ }^{6}$ In this synthesis, shown in Scheme 1, reaction of a 4 -formylpyroglutamate ester urethane $\mathbf{3}$ with a bisnucleophile gave rise, on deprotection, to a variety of homochiral heterocyclic amino acids such as 4, 5 or 6.
\dagger Present address: Department of Chemistry, University of Witwatersrand, PO WITS 2050, South Africa.
\ddagger Present address: BioFocus plc, 130 Abbott Drive, Sittingbourne Research Centre, Sittingbourne, Kent, UK ME9 8AZ.

Results and discussion

The reported biological activity of the natural product willardiine $7,{ }^{7,8}$ made the synthesis of isomeric pyrimidinediones of interest. (2S)-2-Amino-3-(2,4-dioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl)propionic acid $\mathbf{8}$ was erroneously reported in the secondary literature ${ }^{9}$ as the structure of a naturally-occurring compound present in pea seedlings. We have prepared a series of pyrimidinones 5^{6} by reaction of an enol ether $\mathbf{9}$ with formamidine, benzamidine, acetamidine or guanidine followed by deprotection, but our attempts to prepare the pyrimidinedione 8 and related compounds by reacting the poorer nucleophiles urea and thiourea with the pyroglutamate aldehyde 3 proved ineffective. ${ }^{6}$ An alternative synthetic approach to pyrimidinedione analogues of willardiine was therefore required.

We argued that, if a bond could be made between the carbon atom of the aldehyde group 3 and a nitrogen atom from the poor nucleophile, then the subsequent 'ring-switching' process might be possible. The aldehyde $\mathbf{1 1}$ was therefore prepared by hydrolysis of the enaminone $\mathbf{1 0}^{6}$ as in Scheme 2. This was con-

8

11

12

Scheme 2 (i) (a) $\mathrm{HCl}-\mathrm{MeOH}$; (b) $\mathrm{MeNH}_{2}-\mathrm{MeOH} ; 86 \%$; (ii) ClSO_{2} $\mathrm{NCO} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 88 \%$.
verted into the secondary enaminone $\mathbf{1 2}$ by treatment with excess methylamine at room temperature for 15 minutes. The ${ }^{1} \mathrm{H}$ NMR spectrum indicated that the enaminone occurred entirely as the E-isomer $\mathbf{1 2}$ in the crystalline state but that it formed a mixture of E - and Z-isomers on standing in solution. The signal for the NH proton at $\delta 7.75 \mathrm{ppm}$ for the Z-isomer 12a was over 3 ppm downfield from the corresponding proton ($\delta 4.42 \mathrm{ppm}$) in the E-isomer, consistent with the hydrogen bonding expected in the former isomer and NOE results were in keeping with the assignments. The enaminone $\mathbf{1 2}$ reacted with chlorosulfonyl isocyanate to afford the urea 13 in 88% yield. Attempts to cause this compound to undergo 'ringswitching' by thermolysis failed completely and heating at reflux in $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{EtOH}$ seemed merely to remove the protecting groups.

15

Because failure of the urea $\mathbf{1 3}$ to undergo 'ring-switching' might be due to it being fixed as the E-isomer, the primary enaminone $\mathbf{1 4}$ was prepared from the aldehyde $\mathbf{1 1}$ using ammonium acetate and acetic acid in benzene in the presence of $3 \AA$ molecular sieves. This was converted into the corresponding urea 15 using chlorosulfonyl isocyanate. On treatment with base, the urea 15 should be capable of yielding the Z-isomer, required for cyclisation. It was therefore heated at reflux in $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{EtOH}$ but again deprotection appeared to be the only reaction.

Since instability of the protecting groups to base seemed to be a problem, we prepared the tert-butoxycarbonyl tert-butyl ester $\mathbf{1 8}$ in 40% overall yield, as shown in Scheme 3, by first reacting the corresponding unfunctionalised diprotected pyroglutamate 16^{10} with lithium hexamethyldisilazide followed by treatment with methyl formate to yield the intermediate aldehyde 17 as an oil and then reacting this with ammonium acetate, acetic acid and $3 \AA$ molecular sieves. The primary enaminone 18 had similar spectroscopic properties at room temperature, 60 and $-50^{\circ} \mathrm{C}$ to those exhibited by the analogous enaminone 14 , existing as the E-isomer shown in the crystalline form but equilibrating to a $1: 1$ mixture of geometrical isomers on standing in $\mathrm{C}^{2} \mathrm{HCl}_{3}$. Reaction with chlorosulfonyl isocyanate and flash chromatography of the product on silica gel gave a mixture of the Z-isomer 19b in 18% yield and the E-isomer 19a in 22% yield, the stereochemistry and structure of the individual isomers being indicated by NOE experiments. The NH signal in the ${ }^{1} \mathrm{H}$ NMR spectrum of the Z-isomer 19 b was 0.7 ppm downfield from that in the spectrum of the E-isomer 19a, indicating hydrogen bonding in 19b. The stereochemistry was confirmed by single crystal X-ray structure analysis of the Z-isomer 19b. ${ }^{11}$

When the E-urea 19 a was heated at reflux in ethanol containing one equivalent of $\mathrm{K}_{2} \mathrm{CO}_{3}$, 'ring-switching' was finally accomplished and the protected pyrimidine-2,4-dione $\mathbf{2 0}$ was obtained in 57% yield. This reaction presumably involved the intermediacy of the Z-isomer 19b, although this isomer was not observed when TLC was used to follow the reaction. Ringswitching to the pyrimidine-2,4-dione 20 was observed when the Z-urea 19b was heated at reflux in potassium carbonateethanol. TLC analysis suggested that the E-isomer was produced concurrently with this process. Deprotection of the pyrimidine-2,4-dione $\mathbf{2 0}$ using hydrochloric acid gave the amino acid $\mathbf{8}$ in quantitative yield.

All of the compounds which we have prepared to date with potential for interaction with glutamate receptors have been α-amino acids of the L-series with but one asymmetric centre. It was of interest to see whether compounds containing a non-aromatic heterocyclic ring system with a second asymmetric centre might be biologically active and whether the biological activity might be related to the stereochemistry of the second asymmetric centre. We therefore reduced the secondary enaminone $\mathbf{1 2}$ with sodium cyanoborohydride in methanol at pH 3 to 4.6 using screened methyl orange and 1 M HCl to maintain pH as shown in Scheme 4. The diastereoisomeric amines 21 were obtained as an inseparable mixture which on reaction with phenyl isocyanate gave the corresponding ureas $\mathbf{2 2}$ and $\mathbf{2 3}$ in 90% yield. These were separated chromatographically and assigned stereochemistry using NOE experiments. The ratio of trans $\mathbf{2 2}$ to cis $\mathbf{2 3}$ isomers was $7: 3$. Although treatment of the major isomer 22 with sodium hydride in THF caused 'ring-switching' in 40% yield, this was accompanied by epimerisation to give a $1: 1$ mixture of $\mathbf{2 4}$ and 25 which could be separated chromatographically. Thermal rearrangement could be achieved without epimerisation, albeit in only 20% yield, but this allowed the stereochemistry of the products to be assigned. Deprotection of each of the diastereoisomers 24 and 25 by hydrogenolysis gave samples of the separate free amino acids 26 and 27 and these were found by Dr A. Batchelor of the Wellcome Foundation to be equally

Scheme 3 (i) (a) LiHMDS, $\mathrm{HCO}_{2} \mathrm{Me}$; (b) $\mathrm{NH}_{4} \mathrm{OAc}-\mathrm{ACOH} ; 40 \%$; (ii) $\mathrm{ClSO}_{2} \mathrm{NCO}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathbf{1 9 a}, 22 \%, 19 b, 18 \%$; (iii) $\Delta, \mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{EtOH}$; 57%; (iv) $\mathrm{HCl}, 94 \%$.

Scheme 4 (i) $\mathrm{Na}(\mathrm{CN}) \mathrm{BH}_{3}, \mathrm{pH} 4 ; 99 \%$; (ii) $\mathrm{PhNCO}-\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 90 \%$; (iii) $\mathbf{2 2}$ to 24, $\Delta ; 20 \%$; (iv) $\mathbf{2 2}+\mathbf{2 3}$ to $24+\mathbf{2 5}, \mathrm{NaH}-\mathrm{THF} ; 41 \%$.
weakly antagonistic to the action of the metabotropic agonist trans-aminocyclopentanedicarboxylic acid (ACDP) in Purkinje rat cells using the method of East and Garthwaite. ${ }^{12}$

Reaction of the mixture of amines 21 with KCNO-HOAc gave the ureas 28 and 29, which could be rearranged to the protected heterocyclic amino acids $\mathbf{3 0}$ and $\mathbf{3 1}$ respectively using NaH . These could be deprotected by hydrogenolysis, giving the amino acids $\mathbf{3 2}$ and 33 . Unfortunately none of the mixtures of diastereoisomers could be separated in this series.

Reaction of the amines 21 with methyl isothiocyanate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave an inseparable 7:3 mixture of the diastereoisomeric thioureas $\mathbf{3 4}$ and $\mathbf{3 5}$ in 72% yield. Thermal rearrange-
ment gave the 'ring-switched' products $\mathbf{3 6}$ and $\mathbf{3 7}$ in unchanged ratio and these were separated chromatographically. Single crystal X-ray structural analysis ${ }^{11}$ confirmed that the major isomer was the $(2 S, 4 S)$-isomer 36. All attempts to deprotect the thioxopyrimidones to obtain the corresponding amino acids were unsuccessful.
Reduction of the primary enaminone $\mathbf{1 4}$ and reaction with KCNO-HOAc has also allowed us to access the diastereoisomeric mixture 38. This underwent the 'ring-switching' reaction to give the epimers 39 on heating. Deprotection by hydrogenolysis gave the diastereoisomeric mixture $\mathbf{4 0}$ which could not be separated.

26

27

31

28

32

29

33

34

35

36

37

40

We have extended our novel "ring-switching" methodology to allow the synthesis of compounds which are unavailable by our original methodology by virtue of the poor reactivity of the bisnucleophile. When the bond which would have required an intermolecular reaction is formed by an alternative route then the second intramolecular "ring-switching" step can be effected. Thus ($2 S$)-2-amino-3-(2,4-dioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl)propionic acid 8, and l-alanine derivatives, which are β-substituted by a reduced pyrimidinedione containing a second chiral centre have been prepared. In one case, the antagonist activity at metabotropic glutamate receptors of two diastereoisomers showed little difference.

Experimental

Melting points were determined on a Kofler hot stage apparatus and are uncorrected. Optical rotations (given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$) were recorded on a Perkin-Elmer PE241 polarimeter. UV spectra were recorded on a Phillips PU800 spectrometer and IR spectra on a Perkin-Elmer 1710 Fourier transform spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker WM360 $(360 \mathrm{MHz})$ or AMX $500(500 \mathrm{MHz})$ spectrometers. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AMX 500 spectrometer (125.76 MHz) by Dr A. Avent. DEPT analysis was used in all ${ }^{13} \mathrm{C}$ NMR spectra to help assign signals. FAB mass spectra were recorded on a Kratos MS25 spectrometer by Mr A. Greenway. EI mass spectra and accurate mass determinations were recorded on a Kratos Concept spectrometer by Dr S. Chotai of the Wellcome Foundation. Elemental analyses were carried out by Ms M. Patel of the University of Sussex or by the staff of the Wellcome Foundation Physical Sciences Department. Flash column chromatography was carried out using Merck silica gel 60H (230-300 mesh).

Benzyl (2S,4RS)-N-benzyloxycarbonyl-4-formylpyroglutamate 11

Benzyl (2S)- N -benzyloxycarbonyl-4-dimethylaminomethylenepyroglutamate $\mathbf{1 0}^{6}$ ($500 \mathrm{mg}, 1.22 \mathrm{mmol}$) and 1 M aqueous HCl $(1.6 \mathrm{ml}, 1.59 \mathrm{mmol})$ were dissolved in methanol and stirred for 30 min at room temperature. The solvent was removed in vacuo and the resultant oil was partitioned between ethyl acetate and water. The aqueous layer was extracted with ethyl acetate and the combined organic phases were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo to give a quantitative yield of benzyl ($2 S, 4 R S$)-N-benzyloxycarbonyl-4formylpyroglutamate $\mathbf{1 1}$ as a pale yellow oil. The product was homogeneous as judged by TLC and was employed immediately after preparation in subsequent reactions without further purification.

Benzyl (2S)-N-benzyloxycarbonyl-4- N-methylaminomethylenepyroglutamate 12

Benzyl ($2 S, 4 R S$)- N-benzyloxycarbonyl-4-formylpyroglutamate $11(9.88 \mathrm{~g}, 26 \mathrm{mmol})$ and methylamine (4.8 ml of a 25% aqueous solution, 32 mmol) were dissolved in methanol (32 ml) and left for 15 min at room temperature. The solvent was removed in vacuo and the resultant oil was allowed to stand for 14 h . Partial crystallisation occurred. Recrystallisation from ethanol yielded benzyl (2S)-N-benzyloxycarbonyl-4-N-methylaminomethylenepyroglutamate $\mathbf{1 2}$ as pale yellow crystals $(8.77 \mathrm{~g}$, 86%), mp 144-148 ${ }^{\circ} \mathrm{C}$ (Found: C, 67.0; H, 5.45; N, 7.0. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, 67.0; H, 5.6; N, 7.1\%); m/z (+ve FAB, 3-nitrobenzyl alcohol (3-NBA)) 395 ($[\mathrm{M}+\mathrm{H}]^{+}$) and $417([\mathrm{M}+$ $\left.\mathrm{Na}]^{+}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1748$ (ester/imide) and 1624 ($\mathrm{C}=\mathrm{C}$); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 217$ and 315 ($\log \varepsilon 3.93$ and 3.86); E-isomer 12: $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right.$, recorded immediately) $7.30(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 7.20\left(1 \mathrm{H}, \mathrm{dt}, J_{6, \mathrm{NH}} 13.5, J_{6,3} 1.8,=\mathrm{C} H \mathrm{~N}\right)$, $5.19(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.69\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~A}} 10.7\right.$, $\left.J_{2,3 \mathrm{~B}} 3.6, \mathrm{H}-2\right), 4.42(1 \mathrm{H}$, br, exch. m, NHMe), $2.95(3 \mathrm{H}, \mathrm{d}$, $\left.J_{\mathrm{Me}, \mathrm{NH}} 4.9, \mathrm{NCH}_{3}\right), 2.85(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~B})$ and $2.44(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J_{3 \mathrm{~A}, 3 \mathrm{~B}} 14.7, \mathrm{H}-3 \mathrm{~A}$); Z-isomer 12a: $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right.$ formed on standing in solution) $7.75(1 \mathrm{H}, \mathrm{br} \mathrm{m}$, exch. $\mathrm{N} H), 7.3(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar} H), 6.53\left(1 \mathrm{H}, \mathrm{d}, J_{6, \mathrm{NH}} 11,=\mathrm{CHN}\right), 5.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right)$, $5.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.67(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.93\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{Me}, \mathrm{NH}}\right.$ $\left.5.1, \mathrm{NCH}_{3}\right), 2.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~A})$ and $2.52\left(1 \mathrm{H}, \mathrm{dd}, J_{3,2} 3.6, J_{3 \mathrm{~A}, 3 \mathrm{~B}}\right.$ 14.8, $\mathrm{H}-3$); irradiation of the broad NH multiplet at 4.42 (E-isomer) gave NOE at the peaks for H-3 at $2.85(0.7 \%)$ and $2.44 \mathrm{ppm}(1.7 \%)$; irradiation at the $=\mathrm{CH}$ doublet at 6.53 ppm (Z-isomer) gave NOE to NCH_{3} at $2.93(2 \%)$, NH at 7.75 (1.1\%) and $\mathrm{H}-3$ at $2.52 \mathrm{ppm}(1.6 \%) ; \delta_{\mathrm{C}}\left(125.76 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right.$, both isomers) 171.4, 171.3, 168.8 and $167.8(4 \times \mathrm{CO}), 151.8$ (urethane), 149.1 (C-6), 145.36 (urethane), 135.5, 135.5 and $135.2(3 \times$ ipso $C), 128.4,128.4,128.3,128.2,128.0,128.0$, 127.8 and $127.75(8 \times \mathrm{ArCH}), 92.5$ and $89.3(2 \times \mathrm{C}-4), 67.5$, 67.4 and $66.9\left(3 \times \mathrm{ArCH}_{2}\right), 56.7$ and $55.7(2 \times \mathrm{C}-2), 35.0$ and $34.6\left(2 \times \mathrm{NCH}_{3}\right)$, and 25.9 and $24.5(2 \times \mathrm{C}-3)$.

Benzyl (2S)-N-benzyloxycarbonyl-4-[(1-methylureido)methylene]pyroglutamate 13

Benzyl (2S)- N-benzyloxycarbonyl-4- N-methylaminomethylenepyroglutamate 12 ($725 \mathrm{mg}, 1.84 \mathrm{mmol}$) was dissolved in dichloromethane $(10 \mathrm{ml})$ and cooled to ice bath temperature with stirring and under an atmosphere of nitrogen. Chlorosulfonyl isocyanate ($0.24 \mathrm{ml}, 2.76 \mathrm{mmol}$) was added dropwise and stirring was continued for 100 min at ice bath temperature. Water (5 ml) was added causing an instant emulsion. The mixture was concentrated to a small volume in vacuo, diluted with water and extracted with ethyl acetate. The combined organic phases were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The
solvent was removed in vacuo to yield a pale yellow oil which was purified by flash chromatography on silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(94.5: 5.5)$ to yield benzyl (2S)-N-benzyl-oxycarbonyl-4-[(1-methylureido)methylene]pyroglutamate 13 as a glassy solid; ($0.708 \mathrm{~g}, 88 \%$); $[a]_{\mathrm{D}}^{23}+11\left(c 0.6, \mathrm{CHCl}_{3}\right)$ (Found: C, $62.3 ; \mathrm{H}, 5.3 ; \mathrm{N}, 9.8 . \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, $63.15 ; \mathrm{H}, 5.3$; $\mathrm{N}, 9.6 \%) ; m / z(+\mathrm{ve} \mathrm{FAB}, 3-\mathrm{NBA}) 460\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$and 438 $\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1749$ (imide) and $1710(\mathrm{C}=\mathrm{O})$; $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 214$ and $274\left(\log \varepsilon 5.07\right.$ and 3.96); $\delta_{\mathrm{H}}(360$ $\left.\mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 7.77(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{C} H \mathrm{~N}), 7.4-7.25(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$, $\left.5.76(2 \mathrm{H}, \text { exch. br s, } \mathrm{NH})_{2}\right), 5.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.10(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.69\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~A}} 3.2, J_{2,3 \mathrm{~B}} 10.4, \mathrm{H}-2\right), 3.24(1 \mathrm{H}$, ddd, $\left.J_{3 \mathrm{~B}, 6} 2.0, J_{3 \mathrm{~B}, 2} 10.4, J_{3 \mathrm{~B}, 3 \mathrm{~A}} 16.2, \mathrm{H}-3 \mathrm{~B}\right), 3.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$ and $2.89\left(1 \mathrm{H}\right.$, br d, $\left.J_{3 \mathrm{~A}, 3 \mathrm{~B}} 16.2, \mathrm{H}-3 \mathrm{~A}\right)$.

Benzyl (2S)- N -benzyloxycarbonyl-4-aminomethylenepyroglutamate 14

Benzyl (2S,4RS)-N-benzyloxycarbonyl-4-formylpyroglutamate $11(2.08 \mathrm{~g}, 5.49 \mathrm{mmol})$, acetic acid (0.275 ml), ammonium acetate $(0.845 \mathrm{~g}, 11 \mathrm{mmol})$ and $3 \AA$ Å molecular sieves $(5 \mathrm{~g})$ were added to benzene (15 ml) with stirring. The mixture was left for 18 h at room temperature and filtered through Celite. The residue was washed with ethyl acetate. The combined filtrate and washings were washed with 5% aqueous sodium hydrogen carbonate and brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed in vacuo to yield a tan coloured oil. This was recrystallised from toluene to yield benzyl ($2 S$)-N-benzyloxycarbonyl-4 aminomethylenepyroglutamate 14 as a white solid ($1.43 \mathrm{~g}, 68 \%$); $\mathrm{mp} 82-85^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{23}-33\left(c\right.$ 1, CHCl_{3}) (Found: C, 66.4; H, 5.2; $\mathrm{N}, 7.6 . \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 66.3 ; \mathrm{H}, 5.3 ; \mathrm{N}, 7.4 \%$); $m / z(+\mathrm{ve}$ FAB, 3-NBA) $403\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$and $381\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1762(\mathrm{C}=\mathrm{O})$ and 1682; $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 216$ and $296(\log \varepsilon 4.04$ and 4.14$)$; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 7.37-7.26$ $(11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and $=\mathrm{CHN}), 5.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.10(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.72\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~A}} 3.6, J_{2,3 \mathrm{~B}} 10.7, \mathrm{H}-2\right), 4.52(2 \mathrm{H}$, br exch., $\mathrm{N} H_{2}$), 2.84 (1 H, ddd, $J_{3 \mathrm{~B}, 6} 2.0, J_{3 \mathrm{~B}, 2} 10.7, J_{3 \mathrm{~B}, 3 \mathrm{~A}} 15.2$, $\mathrm{H}-3 \mathrm{~B})$ and $2.43\left(1 \mathrm{H}\right.$, ddd, $\left.J_{3 \mathrm{~A}, 6} 1.9, J_{3 \mathrm{~A}, 2} 3.6, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 15.2, \mathrm{H}-3 \mathrm{~A}\right)$; irradiation at the exch. NH_{2} at 4.52 ppm gave NOE to ArH at $7.34(7.7 \%)$ and $\mathrm{H}-3$ at $2.84(0.7 \%)$ and $2.43 \mathrm{ppm}(1.2 \%)$; on standing in solution, distinct peaks associated with the Z isomer became evident at $6.67\left(1 \mathrm{H}, \mathrm{t}, J_{6, \mathrm{NH}} 10.6,=\mathrm{C} H \mathrm{NH}_{2}\right)$, $4.72(1 \mathrm{H}$, overlapping with $\mathrm{H}-2$ of Z-isomer, $\mathrm{H}-2), 2.98(1 \mathrm{H}$, dd, $\left.J_{3 \mathrm{~A}, 2} 10.8, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 14.5, \mathrm{H}-3 \mathrm{~A}\right)$ and $2.53\left(1 \mathrm{H}, \mathrm{dd}, J_{3 \mathrm{~B}, 2} 3.3\right.$, $J_{3 \mathrm{~B}, 3 \mathrm{~A}} 14.5, \mathrm{H}-3 \mathrm{~B}$); irradiation of the olefinic t at 6.67 ppm gave NOE to H-3 at $2.98(0.5 \%)$ and $2.53 \mathrm{ppm}(1.2 \%)$; when the spectrum was recorded at 332 K , the N_{2} group of the Z isomer was evident as a broad hump at 6.16 ppm ; irradiation of this peak caused the t for $=\mathrm{CH}$ at 6.67 ppm to collapse to a $\mathrm{br} \mathrm{s} ; \delta_{\mathrm{C}}\left(127.56 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right.$, both isomers) $171.43,169.0$, 168.1 and $151.9(4 \times \mathrm{CO}), 144.6$ and $141.1(2 \times \mathrm{C}-6), 135.5$ and $135.3(2 \times$ ipso $C), 128.6,128.5,128.4,128.2,128.1$ and 128.1 $(6 \times \mathrm{ArCH}), 96.0$ and $92.4(2 \times \mathrm{C}-4), 67.8,67.7,67.1$ and 67.1 $(4 \times \mathrm{PhCO}), 56.8$ and $55.8(2 \times \mathrm{C}-2)$, and 25.9 and $24.0(2 \times \mathrm{C}-3)$.

Benzyl (2S)- N -benzyloxycarbonyl-4-ureidomethylenepyroglutamate 15

Benzyl (2S)- N-benzyloxycarbonyl-4-aminomethylenepyroglutamate $\mathbf{1 4}(191 \mathrm{mg}, 0.503 \mathrm{mmol})$ was dissolved in dichloromethane (3 ml) and cooled to dry ice-industrial methylated spirits (IMS) bath temperature with stirring under an atmosphere of nitrogen. Chlorosulfonyl isocyanate $(0.053 \mathrm{ml}$, 0.604 mmol) was added dropwise, stirring was continued for 10 min and the reaction was warmed to ice bath temperature. After standing for 1 h , the reaction was quenched by addition of 5% aqueous citric acid (5 ml), concentrated to a small volume in vacuo, diluted with water and extracted with ethyl acetate. The organic phase was separated and on standing a white precipitate formed. This was collected by filtration. Addition of petroleum ether $\left(60-80^{\circ} \mathrm{C}\right)$ to the filtrate yielded
further precipitate. The combined solids were recrystallised from ethanol to yield benzyl (2S)-N-benzyloxycarbonyl-4ureidomethylenepyroglutamate 15 as a white solid $(0.142 \mathrm{~g}$, 67%); $\mathrm{mp} 199-200{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}^{23}+17\left(c 0.8, \mathrm{CHCl}_{3}\right) ; ~ m / z(\mathrm{EI})$ found: 423.14259. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires 423.14304; m / z (+ve FAB, thioglycerol) $446\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$and $424\left([\mathrm{M}+\mathrm{H}]^{+}\right) ;[a]_{\mathrm{D}}^{23}+17$ (c 1.1, CHCl_{3}); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3340(\mathrm{NH}), 1778$ (imide), 1749 (ester) and $1713(\mathrm{C}=\mathrm{O}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 212$ and 284 (log $\varepsilon 5.12$ and 4.38$)$; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 9.24(1 \mathrm{H}$, exch. d, $\left.J_{\mathrm{NH}, 6} 12.1, \mathrm{~N} H\right), 7.58\left(1 \mathrm{H}\right.$, br d, $\left.J_{6, \mathrm{NH}} 12.1,=\mathrm{C} H \mathrm{~N}\right), 7.38-7.28$ $(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.49\left(2 \mathrm{H}, \mathrm{br}\right.$ exch., $\left.\mathrm{NH}_{2}\right), 5.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}{ }^{-}\right.$ $\mathrm{O}), 5.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.82\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~A}} 3.05, J_{2,3 \mathrm{~B}} 10.7\right.$, $\mathrm{H}-2), 2.98\left(1 \mathrm{H}\right.$, ddd, $\left.J_{3 \mathrm{~B}, 6} 2.5, J_{3 \mathrm{~B}, 2} 10.7, J_{3 \mathrm{~B}, 3 \mathrm{~A}} 16.5, \mathrm{H}-3 \mathrm{~B}\right)$ and $2.54\left(1 \mathrm{H}\right.$, br d, $\left.J_{3 \mathrm{~A}, 3 \mathrm{~B}} 16.5, \mathrm{H}-3 \mathrm{~A}\right)$; addition of ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ caused the olefinic d at 7.58 ppm to collapse to a br s; $\delta_{\mathrm{C}}(125.76 \mathrm{MHz}$, [${ }^{2} \mathrm{H}_{6}$]DMSO) 171.1, 166.6 and $154.0(3 \times \mathrm{CO}), 151.0$ (urethane), 135.5 and $135.4(2 \times$ ipso-C $), 132.2(\mathrm{C}-6), 128.4,128.3,128.2$, 128.0, 128.0 and $127.5(6 \times \mathrm{ArCH}), 102.1(\mathrm{C}-4), 67.1$ and 66.6 $(2 \times \mathrm{PhCO})$, and $55.2(\mathrm{C}-2)$ and $24.3(\mathrm{C}-3)$.

tert-Butyl (2S)-N-tert-butoxycarbonyl-4-aminomethylenepyroglutamate 18

tert-Butyl (2S)-N-tert-butoxycarbonylpyroglutamate $\mathbf{1 6}^{10}$ $(5.33 \mathrm{~g}, 19 \mathrm{mmol})$ was dissolved in tetrahydrofuran (20 ml) and cooled to $-78^{\circ} \mathrm{C}$, with stirring and under an atmosphere of nitrogen. Lithium hexamethyldisilazide (20.6 ml of a 1 M solution in THF, 26 mmol) was added dropwise over 2 min and stirring was continued for 55 min . Methyl formate (2.4 ml , $38 \mathrm{mmol})$ was added and stirring was continued for 25 min at $-78^{\circ} \mathrm{C}$. The reaction was warmed to ice bath temperature, left for a further 30 min and quenched by addition of 10% aqueous citric acid (40 ml) with rapid stirring. The mixture was concentrated to a small volume in vacuo and extracted with ethyl acetate. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to yield a yellow oil, which was dissolved in benzene (45 ml) with ammonium acetate (3.08 $\mathrm{g}, 0.04 \mathrm{~mol})$, acetic acid $(1 \mathrm{ml})$ and $3 \AA$ molecular sieves $(13 \mathrm{~g})$. The mixture was stirred vigorously for 18 h at room temperature and filtered through Celite. The solvent was removed in vacuo to yield a red oil which was purified by flash chromatography on silica gel, eluting with EtOAc-MeOH (96.8: 3.2) followed by EtOAc-MeOH (95: 5). tert-Butyl ($2 S$)-N-tert-butoxycarbonyl-4-aminomethylenepyroglutamate $\mathbf{1 8}$ was isolated as a yellow oil $(2.356 \mathrm{~g}, 40 \%) ;[a]_{\mathrm{D}}^{23}-16.8\left(c 1, \mathrm{CHCl}_{3}\right) ; m / z(\mathrm{EI})$ found: 312.17030. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires 312.16852; m/z (+ve FAB, thioglycerol + sodium) $335\left([\mathrm{M}+\mathrm{Na}]^{+}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $1757(\mathrm{C}=\mathrm{O}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 212$ and $294(\log \varepsilon 4.03$ and 4.13); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right)\left(E\right.$-isomer) $7.29\left(1 \mathrm{H}, \mathrm{t}, J_{6, \mathrm{NH}} 10.5\right.$, $=\mathrm{C} H \mathrm{~N}), 5.04\left(2 \mathrm{H}\right.$, br exch. d, $\left.J_{\mathrm{NH}, 6} 10.5, \mathrm{~N} H_{2}\right), 4.42(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{2,3 \mathrm{~A}} 3.7, J_{2,3 \mathrm{~B}} 10.8, \mathrm{H}-2\right), 2.80\left(1 \mathrm{H}\right.$, ddd, $J_{3 \mathrm{~B}, 6} 2.0, J_{3 \mathrm{~B}, 2} 10.8$, $\left.J_{3 \mathrm{~B}, 3 \mathrm{~A}} 15.3, \mathrm{H}-3 \mathrm{~B}\right), 2.34\left(1 \mathrm{H}\right.$, ddd, $J_{3 \mathrm{~A}, 6} 1.7, J_{3 \mathrm{~A}, 2} 3.7, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 15.3$, $\mathrm{H}-3 \mathrm{~A}), 1.49\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; addition of ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ caused the olefinic t at 7.29 ppm to simplify to a br s; irradiation of the br d at 5.04 ppm gave NOE to $=\mathrm{CH}$ at $7.29(1.6 \%)$ and to $\mathrm{H}-3$ at $2.80(1.4 \%)$ and $2.34 \mathrm{ppm}(1.6 \%)$; peaks associated with the Z-isomer became apparent when the spectrum was recorded after the sample had been allowed to stand in solution; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 6.67\left(1 \mathrm{H}, \mathrm{t}, J_{6, \mathrm{NH}} 10.7\right.$, $=\mathrm{C} H \mathrm{~N}), 4.37\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~B}} 3.7, J_{2,3 \mathrm{~A}} 10.7, \mathrm{H}-2\right), 2.88(1 \mathrm{H}$, ddd, $\left.J_{3 \mathrm{~A}, 6} 1.2, J_{3 \mathrm{~A}, 2} 10.7, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 14.8, \mathrm{H}-3 \mathrm{~A}\right), 2.41\left(1 \mathrm{H}, \mathrm{dd}, J_{3 \mathrm{~B}, 2} 3.7\right.$, $\left.J_{3 \mathrm{~B}, 3 \mathrm{~A}} 14.8, \mathrm{H}-3 \mathrm{~B}\right)$ and $1.45-1.42$ (18 H , singlets overlapping with those of the E-isomer, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; addition of ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ caused the t at 6.67 ppm to simplify to a br s ; irradiation of the olefinic t at 6.67 ppm gave NOE to $\mathrm{H}-3$ at $2.88(0.5 \%)$ and 2.41 ppm (1.2%); when the spectrum was recorded at 332 K the NH_{2} group was evident as a broad hump at 6.22 ppm ; irradiation at this peak caused the olefinic t at 6.67 ppm to collapse to a br s ; $\delta_{\mathrm{C}}\left(127.56 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right.$ both isomers) $171.0,170.9,169.7$ and $168.8(4 \times C O), 150.4$ and $150.3(2 \times$ urethane $), 143.5$ and 140.3
$(2 \times \mathrm{C}-6), 96.5$ and $92.99(2 \times \mathrm{C}-4), 82.2,81.8$ and $81.7(3 \times$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 57.4$ and $56.5(2 \times \mathrm{C}-2), 28.0$ and $27.9\left(2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, and 25.7 and $23.9(2 \times \mathrm{C}-3)$.

tert-Butyl (2S)-N-tert-butoxycarbonyl-4-ureidomethylenepyroglutamate 19

tert-Butyl (2S)-N-tert-butoxycarbonyl-4-aminomethylenepyroglutamate $18(1.103 \mathrm{~g}, 3.53 \mathrm{mmol})$ was dried by azeotropic removal of residual water with benzene, dissolved in dichloromethane (20 ml) and cooled to dry ice-IMS bath temperature with stirring under an atmosphere of argon. Chlorosulfonyl isocyanate ($0.34 \mathrm{ml}, 3.89 \mathrm{mmol}$) was added dropwise over 3 min . After stirring for a further 10 min , the solution was warmed to ice bath temperature, left for 30 min , and quenched by addition of saturated aqueous ammonium chloride (20 ml). The mixture was concentrated to a small volume in vacuo and extracted with ethyl acetate. The combined organic phases were filtered through Celite to break up the emulsion, washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo to yield a yellow oil, which was purified by flash chromatography on silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(89: 11)$ for the first two products and with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (85: 15). Three components were isolated. tert-Butyl ($2 S, Z$)-N-tert-butoxy-carbonyl-4-ureidomethylenepyroglutamate 19b ($223 \mathrm{mg}, 18 \%$) which was recrystallised from ethanol, mp $183-185{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}$ -31.6 ($c 0.6, \mathrm{MeOH}$) (Found: $\mathrm{C}, 54.3 ; \mathrm{H}, 7.35 ; \mathrm{N}, 11.8$. $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires $\left.\mathrm{C}, 54.1 ; \mathrm{H}, 7.1 ; \mathrm{N}, 11.8 \%\right) ; m / z(+\mathrm{ve} \mathrm{FAB}$, 3-NBA) $733\left([2 \mathrm{M}+\mathrm{Na}]^{+}\right), 711\left([2 \mathrm{M}+\mathrm{H}]^{+}\right), 378\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ and $356\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3427(\mathrm{NH}), 3406,1773$ (imide), 1747 (ester) and $1720 ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 204$ and 299 $(\log \varepsilon 3.67$ and 4.16$) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 9.67(1 \mathrm{H}$, exch. d, $\left.J_{\mathrm{NH}, 6} 11.6, \mathrm{~N} H\right), 7.24\left(1 \mathrm{H}, \mathrm{dt}, J_{6,3 \mathrm{~B}} 2, J_{6, \mathrm{NH}} 11.6\right.$, $\left.=\mathrm{CHN}), 6.90(2 \mathrm{H} \text {, br exch. } \mathrm{NH})_{2}\right), 4.45\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~A}} 3.1, J_{2,3 \mathrm{~B}}\right.$ $10.6, \mathrm{H}-2), 2.97\left(1 \mathrm{H}\right.$, ddd, $\left.J_{3 \mathrm{~B}, 6} 2, J_{3 \mathrm{~B}, 2} 10.6, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 15.8, \mathrm{H}-3 \mathrm{~B}\right)$, 2.46 (obscured by residual DMSO peak, $\mathrm{H}-3 \mathrm{~A}), 1.42(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; addition of ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ caused the olefinic dt at 7.24 ppm to collapse to a br s; irradiation at the olefinic dt at 7.24 ppm gave NOE to $\mathrm{H}-3 \mathrm{~A}$ at $2.46 \mathrm{ppm}(1.8 \%)$; irradiation at the NH exch. d at 9.67 ppm gave NOE at the br exch. at ca. $\left.6.9 \mathrm{ppm}(1.9 \%) ; \delta_{\mathrm{C}}\left(125.76 \mathrm{MHz},{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ $170.5,167.5$ and $153.9(3 \times C O), 149.6$ (urethane), 134.2 (C-6), $100.0(\mathrm{C}-4), 81.8$ and $81.3\left(2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), 56.7(\mathrm{C}-2), 27.6$ and $27.5\left(2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $25.1(\mathrm{C}-3)$. The structure of this compound was confirmed by single crystal X-ray diffraction analysis, reported in our preliminary communication, ${ }^{1}$ and atomic coordinate data were lodged with the Cambridge Crystallography Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW at that time. They are available on request from the Director of the CCDC at the above address, quoting CCDC reference code QENMEB and CCDC number 153592.
tert-Butyl (2S,E)-N-tert-butoxycarbonyl-4-ureidomethylenepyroglutamate 19a ($278 \mathrm{mg}, 22 \%$) was recrystallised from ethanol, mp $175-177{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}^{23}+13(c 0.5, \mathrm{MeOH}) ; m / z(\mathrm{EI})$ found: 355.17142. $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires 355.17434 ; m / z (+ve FAB , 3-NBA) $733\left([2 \mathrm{M}+\mathrm{Na}]^{+}\right), 711\left([2 \mathrm{M}+\mathrm{H}]^{+}\right), 378\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ and $356\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3455(\mathrm{NH}), 1771$ (imide), 1732 (ester) and $1689(\mathrm{C}=\mathrm{O}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 282(\log \varepsilon 4.38)$; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 8.99\left(1 \mathrm{H}\right.$, exch. d, $\left.J_{\mathrm{NH}, 6} 12.1, \mathrm{~N} H\right)$, $7.53\left(1 \mathrm{H}, \mathrm{dt}, J_{6,3} 2.2, J_{6, \mathrm{NH}} 12.1,=\mathrm{C} H \mathrm{~N}\right), 6.40(2 \mathrm{H}$, br exch., $\left.\mathrm{N} H_{2}\right), 4.51\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~A}} 3.3, J_{2,3 \mathrm{~B}} 10.7, \mathrm{H}-2\right), 2.92$ (1 H , ddd, $\left.J_{3 \mathrm{~B}, 6} 2.4, J_{3 \mathrm{~B}, 2} 10.7, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 16.6, \mathrm{H}-3 \mathrm{~B}\right), 2.34\left(1 \mathrm{H}\right.$, ddd, $J_{3 \mathrm{~A}, 6} 2.3$, $\left.J_{3 \mathrm{~A}, 2} 3.3, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 16.6, \mathrm{H}-3 \mathrm{~A}\right), 1.42\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $1.40(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; addition of ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ caused the olefinic dt at 7.53 ppm to collapse to a t with $J_{6,3} 2.4$; irradiation at the olefinic dt at 7.53 ppm changed the appearance of the NH peak at 8.99 ppm , and H-3 at 2.92 and 2.34 ppm ; irradiation at the NH peak at 8.99 ppm gave NOE at the olefinic peak at $7.53(3.1 \%)$, and $\mathrm{H}-3$ at $2.92(0.6 \%)$ and $2.34 \mathrm{ppm}(0.9 \%) ; \delta_{\mathrm{C}}(125.76 \mathrm{MHz}$,
$\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO $) 170.6,166.9$ and $154.1(3 \times \mathrm{CO}), 149.2$ (urethane), $131.4(\mathrm{C}-6), 102.7(\mathrm{C}-4), 81.5$ and $81.3\left(2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right), 55.8$ $(\mathrm{C}-2), 27.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $24.2(\mathrm{C}-3)$. A further unidentified component was recovered $(0.4 \mathrm{~g})$.

tert-Butyl (2S)-2-tert-butoxycarbonylamino-3-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)propionate 20

tert-Butyl $\quad(2 S, E)$ - N-tert-butoxycarbonyl-4-ureidomethylenepyroglutamate $19 \mathrm{a}(175 \mathrm{mg}, 0.49 \mathrm{mmol})$ and potassium carbonate ($69 \mathrm{mg}, 0.49 \mathrm{mmol}$) were heated at reflux in ethanol $(10 \mathrm{ml})$ for 20 h . The solution was filtered and the solvent was removed in vacuo to yield an oil which was purified by flash chromatography on silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (92.5:7.5) to yield tert-butyl ($2 S$)-2-tert-butoxycarbonylamino-3-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)propionate 20 as a white solid ($100 \mathrm{mg}, 57 \%$). An analytical sample was recrystallised from ethanol and ethyl acetate; mp $184{ }^{\circ} \mathrm{C}$ (decomp.); m / z (EI) found: 355.17289. $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires 355.17434); $m / z\left(+\right.$ ve FAB, 3-NBA) $711\left([2 \mathrm{M}+\mathrm{H}]^{+}\right)$and $356\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3394(\mathrm{NH}), 1719(\mathrm{C}=\mathrm{O})$ and $1682(\mathrm{C}=\mathrm{O})$; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 210$ and $263\left(\log \varepsilon 3.94\right.$ and 3.89); $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}, 392 \mathrm{~K}\right) 10.54(1 \mathrm{H}$, br exch., NH$), 10.29(1 \mathrm{H}$, br exch., $\mathrm{N} H), 7.13\left(1 \mathrm{H}, \mathrm{d}, J_{6^{\prime}, \mathrm{NH}} 4.9, \mathrm{H}-6^{\prime}\right), 6.38(1 \mathrm{H}$, exch. d, $\left.J_{\mathrm{NH}, 2} 6.0, \mathrm{NHCO} 2 \mathrm{R}\right), 4.07(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.65\left(1 \mathrm{H}, \mathrm{dd}, J_{3 \mathrm{~A}, 2} 5.5\right.$, $\left.J_{3 \mathrm{~A}, 3 \mathrm{~B}} 14.2, \mathrm{H}-3 \mathrm{~A}\right), 2.44\left(1 \mathrm{H}, \mathrm{dd}, J_{3 \mathrm{~B}, 2} 8.9, J_{3 \mathrm{~B}, 3 \mathrm{~A}} 14.2, \mathrm{H}-3 \mathrm{~B}\right)$, $1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $1.38\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

(2S)-2-Amino-3-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)propionic acid 8

tert-Butyl (2S)-2-tert-butoxycarbonylamino-3-(2,4-dioxo-pyrimidin-5-yl)propionate $20(33 \mathrm{mg}, 0.09 \mathrm{mmol})$ was dissolved in concentrated aqueous hydrochloric acid (ca. 1 ml). After standing for 5 min at room temperature, the acid was removed in vacuo with gentle warming to yield (2S)-2-amino-3-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)propionic acid hydrochloride $\mathbf{8}$ as a white solid ($20 \mathrm{mg}, 94 \%$); $\mathrm{mp} 245^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathrm{D}}^{23}-11.6$ (c 1.2, $\mathrm{H}_{2} \mathrm{O}$); m / z (EI) found: 199.05857. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $199.05931 ; m / z\left(+\right.$ ve FAB, glycerol) $200\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3387,3197(\mathrm{NH}, \mathrm{OH}), 1724(\mathrm{C}=\mathrm{O})$ and 1670 $(\mathrm{C}=\mathrm{O}) ; \lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{nm} 206$ and $264\left(\log \varepsilon 3.85\right.$ and 3.72); $\delta_{\mathrm{H}}(360$ $\left.\mathrm{MHz},{ }^{2} \mathrm{H}_{2} \mathrm{O}\right) 7.30\left(1 \mathrm{H}\right.$, br s, H-6'), $4.03\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~A}} 5.4\right.$, $\left.J_{2,3 \mathrm{~B}} 7.2, \mathrm{H}-2\right), 2.82\left(1 \mathrm{H}\right.$, ddd, $J_{3 \mathrm{~A}, 4^{\prime}} 0.6, J_{3 \mathrm{~A}, 2} 5.4, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 15.1$, $\mathrm{H}-3 \mathrm{~A})$ and $2.66\left(1 \mathrm{H}\right.$, ddd, $J_{3 \mathrm{~B}, 6^{\prime}} 0.4, J_{3 \mathrm{~B}, 2} 7.2, J_{3 \mathrm{~B}, 3 \mathrm{~A}} 15.1$, $\mathrm{H}-3 \mathrm{~B}$); irradiation of the br s for $\mathrm{H}-6^{\prime}$ at 7.30 ppm changed the appearance of $\mathrm{H}-3$ at 2.82 and $2.66 \mathrm{ppm} ; \delta_{\mathrm{C}}(125.76 \mathrm{MHz}$, $\left.{ }^{2} \mathrm{H}_{2} \mathrm{O}\right) 171.3,167.0$ and $153.2(3 \times \mathrm{CO}), 142.9\left(\mathrm{C}-6{ }^{\prime}\right), 107.4$ (C-5'), 52.5 (C-2) and 28.0 (C-3).

Benzyl(2S,4RS)-N-benzyloxycarbonyl-4- N -methylaminomethylpyroglutamate 21

Method A. Benzyl (2S)-N-benzyloxycarbonyl-4-methylaminomethylenepyroglutamate $12(490 \mathrm{mg}, 1.2 \mathrm{mmol})$, sodium cyanoborohydride ($86 \mathrm{mg}, 1.37 \mathrm{mmol}$) and screened methyl orange (2 drops) were dissolved in methanol $(15 \mathrm{ml}) .1 \mathrm{M}$ Aqueous $\mathrm{HCl}(2.1 \mathrm{ml})$ was added dropwise with stirring at room temperature, at such a rate as to keep the pH at or above the neutral point of the indicator. The acid was consumed as the reduction commenced until the end point when the indicator stayed red. This required 25 min . After addition of acid was complete the solution was stirred for a further 40 min and concentrated to a small volume in vacuo. It was basified by cautious addition of saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$ and extracted with ethyl acetate. The combined organic phases were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed in vacuo to yield benzyl ($2 S, 4 R S$)- N-benzyloxy-carbonyl-4-N-methylaminomethylpyroglutamate 21 as a colourless oil ($485 \mathrm{mg}, 98 \%$). This compound was not characterised further but was used directly in the next step.

Method B. Sodium borohydride ($2.88 \mathrm{~g}, 76.2 \mathrm{mmol}$) was cautiously added with stirring at room temperature to acetic acid (200 ml). After addition was complete, stirring was continued for 20 min . Benzyl ($2 S$)- N-benzyloxycarbonyl-4-methylaminomethylenepyroglutamate $\mathbf{1 2}(5.0 \mathrm{~g}, 12.7 \mathrm{mmol})$ was added and the solution stirred for 25 min . Water (7 ml) was added and, once effervescence had slowed, the bulk of the solvent was removed in vacuo and the resultant oil was cautiously basified with saturated aqueous $\mathrm{NaHCO}_{3}(c a .70 \mathrm{ml})$ until a milky emulsion resulted. The mixture was extracted with ethyl acetate, further basified with $15 \% \mathrm{w} / \mathrm{v}$ aqueous $\mathrm{NaOH}(c a .5 \mathrm{ml})$ to a pH of 9 and extracted with ethyl acetate. The combined organic phases were washed with saturated aqueous NaHCO_{3} until no further effervescence was seen, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed in vacuo to yield benzyl ($2 S, 4 R S$)-N-benzyl-oxycarbonyl-4-N-methylaminomethylpyroglutamate $\mathbf{2 1}$ as a pale yellow oil ($5.022 \mathrm{~g}, 99 \%$).

Benzyl (2S,4RS)-N-benzyloxycarbonyl-4-[(1-methyl-3-phenylureido)methyl]pyroglutamate 22 and 23

Benzyl ($2 S, 4 R S$)- N-benzyloxycarbonyl-4- N-methylaminomethylpyroglutamate $21(1.14 \mathrm{~g}, 2.9 \mathrm{mmol})$ and phenyl isocyanate ($0.37 \mathrm{ml}, 3.4 \mathrm{mmol}$) were dissolved in dichloromethane $(10 \mathrm{ml})$. After standing for 15 h at room temperature the solvent was removed in vacuo and the resultant oil was purified by flash chromatography on silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (97:3). Benzyl (2S,4RS)-N-benzyloxycarbonyl-4-[1-methyl-3phenylureido)methyl]pyroglutamate $\mathbf{2 2}$ and $\mathbf{2 3}$ was isolated as a colourless oil $(1.321 \mathrm{~g}, 90 \%)$. The diastereoisomers were separated by repeated flash chromatography on silica gel, eluting with EtOAc-petroleum ether $\left(60-80^{\circ} \mathrm{C}\right)(55: 45)$. The major isomer, benzyl (2S,4S)-N-benzyloxycarbonyl-4-[(1-methyl-3-phenylureido)methyl]pyroglutamate 22, was a colourless foam; $[a]_{\mathrm{D}}^{23}+13.5\left(c 0.7, \mathrm{CHCl}_{3}\right)$ (Found: C, 67.4; H, 5.8; N, 8.0. $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, 67.6; H, 5.7; N, 8.15\%); m/z (+ve FAB 3-NBA) $516\left([\mathrm{M}+\mathrm{H}]^{+}\right)$and $1031\left([2 \mathrm{M}+\mathrm{H}]^{+}\right)$; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1796$ (imide), 1745 (ester) and 1657 (urea); $\lambda_{\text {max }}$ $(\mathrm{MeOH}) / \mathrm{nm} 217$ and $234(\log \varepsilon 4.02$ and 3.98$) ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$, $\left.\mathrm{C}^{2} \mathrm{HCl}_{3}\right) 7.35(14 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.03(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.93(1 \mathrm{H}, \mathrm{br}$ m , exch. NHAr), $5.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.14(2 \mathrm{H}, \mathrm{m}$, $\mathrm{PhCH}_{2} \mathrm{O}$), 4.71 ($1 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~A}} 2.1, J_{2,3 \mathrm{~B}} 8.1, \mathrm{H}-2$), 3.77 (1 H , dd, $\left.J_{6 \mathrm{~A}, 4} 4.7, J_{6 \mathrm{~A}, 6 \mathrm{~B}} 15.0, \mathrm{H}-6 \mathrm{~A}\right), 3.61\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{~B}, 6 \mathrm{~A}} 15.0, J_{6 \mathrm{~B}, 4} 5.1\right.$, $\mathrm{H}-6 \mathrm{~B}), 3.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4)$ and $2.29(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3)$; $\delta_{\mathrm{C}}\left(125.76 \mathrm{MHz}, \mathrm{C}_{6}{ }^{2} \mathrm{H}_{6}\right) 174.2,171.0$ and $156.0(3 \times \mathrm{CO})$, 151.2 (imide), $140.6,135.7$ and $135.6(3 \times$ ipso C), 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 122.7 and $119.9(8 \times \mathrm{ArCH}), 68.4$ and $67.4(2 \times \mathrm{PhCO}), 57.2(\mathrm{C}-2), 48.1(\mathrm{C}-6), 42.8\left(\mathrm{NCH}_{3}\right), 35.7$ (C-4) and 26.4 (C-3). The minor isomer, benzyl ($2 S, 4 R$)-N-benzyloxycarbonyl-4-[(1-methyl-3-phenylureido)methyl]pyroglutamate 23, was a colourless foam; $[a]_{\mathrm{D}}^{23}+8.2\left(c 0.45, \mathrm{CHCl}_{3}\right)$ (Found: C, 67.45; H, 5.7; N, 8.05. $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, 67.6; H, 5.7; N, 8.15%); $m / z\left(+\right.$ ve FAB 3-NBA) $538\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$and $516\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1791$ (imide), 1747 (ester) and 1658 (urea); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 217$ and 234 ($\log \varepsilon 4.02$ and 3.98); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 7.27(15 \mathrm{H}$, br m, ArH), $6.64(1 \mathrm{H}, \mathrm{br}$ exch. $\mathrm{N} H), 5.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.64$ ($1 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~B}} 6, J_{2,3 \mathrm{~A}} 9.5, \mathrm{H}-2$), $3.72(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 3.04,(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 2.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.55\left(1 \mathrm{H}, \mathrm{dt}, J_{3 \mathrm{~A}, 2}=J_{3 \mathrm{~A}, 6} 9.5, J_{3 \mathrm{~A}, 3 \mathrm{~B}}\right.$ $13.4, \mathrm{H}-3 \mathrm{~A})$ and $2.05\left(1 \mathrm{H}, \mathrm{dt}, J_{3 \mathrm{~B}, 2}=J_{3 \mathrm{~B}, 6} 6, J_{3 \mathrm{~B}, 3 \mathrm{~A}} 13.4, \mathrm{H}-3 \mathrm{~B}\right)$; irradiation of $\mathrm{H}-3 \mathrm{~A}$ at 2.55 ppm resulted in NOE of $\mathrm{H}-3 \mathrm{~B}$ at $2.05(22.5 \%), \mathrm{H}-4$ at $2.91(5.1 \%)$ and $\mathrm{H}-2$ at $4.64 \mathrm{ppm}(10.1 \%)$; irradiation at $\mathrm{H}-2$ at 4.64 ppm resulted in NOE at peaks for $\mathrm{H}-3$ at $2.55(4.1 \%)$ and $2.91 \mathrm{ppm}(0.8 \%)$.

Benzyl ($2 S, 5^{\prime} S$)- and (2S,5' R)-2-benzyloxycarbonylamino-3-(1-methyl-2,4-dioxo-3-phenylhexahydropyrimidin-5-yl)propionate 24 and 25

Method A. Benzyl (2S,4S)-N-benzyloxycarbonyl-4-[(1-methyl-3-phenylureido)methyl]pyroglutamate 22 ($440 \mathrm{mg}, 0.85$
mmol) was heated in an atmosphere of nitrogen to $130^{\circ} \mathrm{C}$ for 111 h . Repeated flash chromatography on silica gel of the resultant oil, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(96: 4)$ and $\mathrm{EtOAc}-$ $\mathrm{Et}_{2} \mathrm{O}(92: 8)$ yielded benzyl (2S,5'S)-2-benzyloxycarbonyl-amino-3-(1-methyl-2,4-dioxo-3-phenylhexahydropyrimidin-5-yl)propionate 24 as a colourless foam ($89 \mathrm{mg}, 20 \%$); $[a]_{D}^{23}-17$ (c 0.8, CHCl_{3}) (Found: C, 67.3; H, 5.6; N, 8.0. $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires $\mathrm{C}, 67.6 ; \mathrm{H}, 5.7$; $\mathrm{N}, 8.15 \%$); $m / z(+\mathrm{ve} \mathrm{FAB}, 3-\mathrm{NBA}) 538$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$and $516\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3064(\mathrm{NH})$, $1723(\mathrm{C}=\mathrm{O})$ and $1679(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 7.08-7.04$ $(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.89\left(1 \mathrm{H}\right.$, br exch. d, $\left.J_{\mathrm{NH}, 2} 7.6, \mathrm{NH}\right), 5.20(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.57(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 3.28$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}$), 2.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}$), 2.90 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$), 2.43 $\left(1 \mathrm{H}, \mathrm{dt}, J_{3 \mathrm{~A}, 2} 6.5, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 13.5, \mathrm{H}-3 \mathrm{~A}\right)$ and $1.96(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~B})$; $\delta_{\mathrm{C}}\left(125.76 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 171.7,171.3,156.0$ and $153.1(4 \times$ CO), 135.9, 135.5 and $135.0(3 \times$ ipso C), 129.0, 128.6, 128.6, 128.5, 128.4, 128.3, 128.2 and $128.1(8 \times \operatorname{ArCH}), 67.4$ and 67.1 $(2 \times \mathrm{PhCO}), 52.1(\mathrm{C}-2), 47.7\left(\mathrm{C}-6^{\prime}\right), 37.7\left(\mathrm{NCH}_{3}\right), 35.7\left(\mathrm{C}-5^{\prime}\right)$, and 30.1 (C-3).

Method B. Benzyl (2S,4RS)-N-benzyloxycarbonyl-4-[(1-methyl-3-phenylureido)methyl]pyroglutamate 22 and 23 $(1.321 \mathrm{~g}, 2.5 \mathrm{mmol})$ and sodium hydride (123 mg of 60% dispersion in oil, 3 mmol) were mixed, with stirring, in tetrahydrofuran $(10 \mathrm{ml})$ under nitrogen. After stirring for 2 h at room temperature the reaction was quenched by addition of 10% w / v aqueous citric acid $(10 \mathrm{ml})$. The mixture was concentrated to a small volume in vacuo, diluted with water and extracted with ethyl acetate. The combined organic phases were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo to yield a yellow oil. This was purified by flash chromatography on silica gel, eluting with 10% ethyl acetate in diethyl ether, yielding fractions containing various ratios of the two diastereoisomers present. The overall yield was 41%. Benzyl (2S,5'R)-2-benzyloxycarbonylamino-3-(1-methyl-2,4-dioxo-3-phenylhexahydropyrimidin-5-yl)propionate 25 was isolated as a colourless foam ($166 \mathrm{mg}, 12.6 \%$); $[a]_{\mathrm{D}}^{23}+2.3$ (c 1.1, CHCl_{3}) (Found: C, 67.6; H, 5.65; N, 8.1. $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, 67.6; H, 5.7; N, 8.15\%); $m / z(+\mathrm{ve}$ FAB, $3-\mathrm{NBA}) 516\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3064(\mathrm{NH}), 3034(\mathrm{NH}), 1723$ (C=O) and 1679 $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 7.1-7.45(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 5.69$ $\left(1 \mathrm{H}\right.$, exch. d, $\left.J_{\mathrm{NH}, 2} 8.4, \mathrm{~N} H\right), 5.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.13(2 \mathrm{H}$, $\mathrm{m}, \mathrm{PhCH} H_{2} \mathrm{O}$), 4.51 (1 H , ddd, $J_{2, \mathrm{NH}} 8.4, J_{2,3 \mathrm{~B}} 4.1, J_{2,3 \mathrm{~A}} 10.6, \mathrm{H}-2$), $3.63\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime}, 5^{\prime}} 5.9, J_{6^{\prime} \mathrm{A}, 6^{\prime} \mathrm{B}} 12.6, \mathrm{H}-6^{\prime} \mathrm{A}\right), 3.37\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime} \mathrm{B}, 5^{\prime}}\right.$ $\left.10.9, J_{6^{\prime} \mathrm{B}, \mathrm{h}^{\prime} \mathrm{A}} 12.6, \mathrm{H}-6^{\prime} \mathrm{B}\right), 3.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.90(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}-5^{\prime}\right), 2.37$ ($1 \mathrm{H}, \mathrm{ddd}, J_{3 \mathrm{~A}, 5^{\prime}} 4.7, J_{3 \mathrm{~A}, 2} 10.6, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 14.5, \mathrm{H}-3 \mathrm{~A}$) and $2.03\left(1 \mathrm{H}\right.$, ddd, $\left.J_{3 \mathrm{~B}, 5^{\prime}} 9.2, J_{3 \mathrm{~B}, 2} 4.1, J_{3 \mathrm{~B}, 3 \mathrm{~A}} 14.5, \mathrm{H}-3 \mathrm{~B}\right)$.

(2S,5'S)-2-Amino-3-(1-methyl-2,4-dioxo-3-phenylhexahydro-pyrimidin-5-yl)propionic acid 26

Benzyl (2S,5'S)-2-benzyloxycarbonylamino-3-(1-methyl-3-phenyl-2,4-dioxohexahydropyrimidin-5-yl)propionate 24 (117 $\mathrm{mg}, 0.23 \mathrm{mmol})$ and 5% palladium on carbon (23 mg) were mixed in acetic acid (10 ml) and stirred vigorously in an atmosphere of hydrogen for 1 h . The catalyst was removed by filtration through Celite and the solvent was removed in vacuo to yield a colourless oil which solidified on standing. Residual acetic acid was removed by washing with a little methanol and drying (high vacuum, desiccator, over NaOH) to yield (2S,5'S)-2-amino-3-(1-methyl-2,4-dioxo-3-phenylhexahydro-pyrimidin- $5-y l$) propionic acid 26 as a white solid ($62 \mathrm{mg}, 94 \%$), mp 178-180 ${ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{23}-19.2\left(c 0.5, \mathrm{H}_{2} \mathrm{O}\right)$ (Found: C, $54.8 ; \mathrm{H}$, 6.0; $\mathrm{N}, 13.6 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 54.4 ; \mathrm{H}, 6.2 ; \mathrm{N}$, $13.6 \%) ; m / z\left(+\mathrm{ve}\right.$ FAB, glycerol) $292\left([\mathrm{M}+\mathrm{H}]^{+}\right)$and 583 $\left([2 \mathrm{M}+\mathrm{H}]^{+}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3416$ br $(\mathrm{NH}, \mathrm{OH})$ and 1712 $(\mathrm{C}=\mathrm{O}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 207(\log \varepsilon 4.01) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz},{ }^{2} \mathrm{H}_{2} \mathrm{O}\right)$ $7.32(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.02(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 3.78\left(1 \mathrm{H}, \mathrm{t}, J_{2,3} 5.7\right.$, $\mathrm{H}-2), 3.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}\right), 3.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $2.24\left(1 \mathrm{H}\right.$, ddd, $\left.J_{3 \mathrm{~A}, 2} 5.7, J_{3 \mathrm{~A}, 5^{\prime}} 7.5, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 15.1, \mathrm{H}-3 \mathrm{~A}\right)$ and 1.88
$\left(1 \mathrm{H}, \mathrm{dt}, J_{3 \mathrm{~B}, 2} 5.7, J_{3 \mathrm{~B}, 3 \mathrm{~A}} 15.1, \mathrm{H}-3 \mathrm{~B}\right)$. A bioassay ${ }^{12}$ was performed by Dr A. Batchelor of the Wellcome Foundation. $100 \mu \mathrm{~m}$ of compound 26 elicited an 85% diminution in the response of $50 \mu \mathrm{~m}$ ACDP.

(2S,5 $\mathbf{5}^{\prime}$ R)-2-Amino-3-(1-methyl-2,4-dioxo-3-phenylhexahydro-pyrimidin-5-yl)propionic acid 27

Benzyl ($2 S, 3 R$)-2-benzyloxycarbonylamino-3-(1-methyl-2,4-di-oxo-3-phenylhexahydropyrimidin-5-yl)propionate 25 (110 mg , 0.21 mmol) and $5 \% \mathrm{Pd}$ on carbon (26 mg) were stirred vigorously in acetic acid (10 ml) in an atmosphere of hydrogen for 1 h at room temperature. The catalyst was removed by filtration and the solvent was removed in vacuo to yield $\left(2 S, 5^{\prime} R\right)-2$ -amino-(1 -methyl-2,4-dioxo-3-phenylhexahydropyrimidin-5-yl)propionic acid 27 as a white solid ($60 \mathrm{mg}, 96 \%$), $\mathrm{mp} 184-6^{\circ} \mathrm{C}$, $[a]_{\mathrm{D}}^{23}-8.3\left(c 0.5, \mathrm{H}_{2} \mathrm{O}\right) ; m / z(\mathrm{EI})$ found: 291.12155. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires 291.12191; m/z (+ve FAB, glycerol) $292\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ and $583\left([2 \mathrm{M}+\mathrm{H}]^{+}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3391(\mathrm{OH}, \mathrm{NH})$ and 1714 $(\mathrm{C}=\mathrm{O}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 207(\log \varepsilon 3.98) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz},{ }^{2} \mathrm{H}_{2} \mathrm{O}\right)$ $7.32(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.02(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 3.69\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~B}} 6.0\right.$, $\left.J_{2,3 \mathrm{~A}} 7.5, \mathrm{H}-2\right), 3.47$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}$), 3.17 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$), 2.89 (3 H , $\left.\mathrm{s}, \mathrm{NCH}_{3}\right), 2.09\left(1 \mathrm{H}, \mathrm{dt}, J_{3 \mathrm{~A}, 2} 7.5, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 15.0, \mathrm{H}-3 \mathrm{~A}\right)$ and 1.89 (1 H, ddd, $J_{3 \mathrm{~B}, 2} 6.0, J_{3 \mathrm{~B}, 5^{\prime}} 3.5, J_{3 \mathrm{~B}, 3 \mathrm{~A}} 15.0, \mathrm{H}-3 \mathrm{~B}$). A bioassay ${ }^{12}$ was performed by Dr A. Batchelor of the Wellcome Foundation. $100 \mu \mathrm{~m}$ of compound 27 elicited a 76% diminution in the response of $50 \mu \mathrm{~m}$ ACDP.

Benzyl (2S,4RS)-N-benzyloxycarbonyl-4-[(1-methylureido)methyl]pyroglutamate 28 and 29

Benzyl (2S,4RS)- N-benzyloxycarbonyl-4- N-methylaminomethylpyroglutamate $21(1.025 \mathrm{~g}, 2.6 \mathrm{mmol})$ and potassium cyanate ($420 \mathrm{mg}, 5.2 \mathrm{mmol}$) were dissolved with stirring in a mixture of methanol $(19 \mathrm{ml})$ and acetic acid (1 ml). After standing at room temperature for 16 h , the solvent was removed in vacuo and the resultant oil was basified by cautious addition of saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$. The mixture was extracted with ethyl acetate. The combined organic phases were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed in vacuo to yield a colourless oil, which was purified by flash chromatography on silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (96:4), to yield benzyl (2S,4RS)-N-benzyloxycarbonyl-4-[(1methylureido)methyl]pyroglutamate $\mathbf{2 8}$ and 29 as a white foam ($974 \mathrm{mg}, 86 \%$) The compound was present as two diastereoisomers in a ratio of ca. 3:7 as indicated by integration in the ${ }^{1} \mathrm{H}$ NMR spectrum, and these could not be further separated; m / z (EI) Found: 439.17281. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires 439.17434; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1794$ (imide), 1747 (ester) and 1657 (urea); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 7.48-7.25(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 5.2(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 5.12\left(1.4 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.09\left(0.6 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right)$, $4.98\left(1.4 \mathrm{H}\right.$, br exch. $\left.\mathrm{N} H_{2}\right), 4.86\left(0.6 \mathrm{H}\right.$, br exch. $\left.\mathrm{N} H_{2}\right), 4.68$ $\left(0.7 \mathrm{H}, \mathrm{t}, J_{2,3} 5.6, \mathrm{H}-2\right), 4.61\left(0.3 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~A}} 9.5, J_{2,3 \mathrm{~B}} 5.7, \mathrm{H}-2\right)$, $3.57(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.87\left(2.1 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $2.84\left(0.9 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.49\left(0.3 \mathrm{H}, \mathrm{dt}, J_{3 \mathrm{~A}, 2} 9.5, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 13.7\right.$, $\mathrm{H}-3 \mathrm{~A}), 2.24(1.4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$ and $1.97\left(0.3 \mathrm{H}\right.$, ddd, $J_{3 \mathrm{~B}, 2} 5.7, J_{3 \mathrm{~A}, 4}$ $\left.7.0, J_{3 \mathrm{~B}, 3 \mathrm{~A}} 13.7, \mathrm{H}-3 \mathrm{~B}\right) ; \delta_{\mathrm{C}}\left(125.76 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 173.7,171.0$, 159.3 and $159.3(5 \times C O)$, 150.4 (urethane), 134.8, 134.7, 134.6 and $134.6(4 \times$ ipso $C), 128.5,128.4,128.4,128.3,128.3,128.3$, 128.2, 128.1, 128.0, 128.0 and $127.9(11 \times \mathrm{ArC})$, 68.2 and 67.3 $(2 \times \mathrm{PhCO}), 57.2$ and $56.8(2 \times \mathrm{C}-2), 48.8$ and $48.0(2 \times \mathrm{C}-6)$, 42.4 and $41.8\left(2 \times \mathrm{NCH}_{3}\right), 35.6$ and $35.5(\mathrm{C}-4), 26.4$ and 24.8 ($2 \times \mathrm{C}-3$).

Benzyl (2S,5'RS)-2-benzyloxycarbonylamino-3-(1-methyl-2,4-dioxohexahydropyrimidin-5-yl)propionate 30 and 31

Benzyl (2S,4RS)-N-benzyloxycarbonyl-4-[(1-methylureido)methyl]pyroglutamate 28 and 29 ($524 \mathrm{mg}, 1.2 \mathrm{mmol}$) and sodium hydride (53 mg of a 60% dispersion in oil, 1.4 mmol) were stirred together in tetrahydrofuran (3 ml) for 30 min at
room temperature. The reaction was quenched by addition of $10 \% \mathrm{w} / \mathrm{v}$ aqueous citric acid (10 ml) and the resultant mixture was concentrated to a small volume in vacuo, diluted with water $(10 \mathrm{ml})$ and extracted with ethyl acetate. The combined organic phases were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed in vacuo to yield a pale yellow oil, which was purified by flash chromatography on silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (96: 4), to yield benzyl ($2 S, 5^{\prime} R S$)-2-benzyloxycarbonylamino-3-(1-methyl-2,4-dioxohexahydropyr-imidin- $5-y l$) propionate $\mathbf{3 0}$ and $\mathbf{3 1}$ as a colourless foam (472 mg , 90%) The two diastereoisomers were present in a ratio of ca. 3:7 as indicated by integration in the ${ }^{1} \mathrm{H}$ NMR spectrum, and could not be further separated; m / z (EI) Found: 439.17755 $\left([\mathrm{M}]^{+}\right) . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires 439.17434); m/z (FAB, NBA) 440 $\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1702(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm}$ $217(\log \varepsilon 3.53) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 8.40(1 \mathrm{H}$, br exch. $\mathrm{N} H)$, 7.26-7.43 ($10 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 6.02\left(0.7 \mathrm{H}\right.$, exch. d, $\left.J_{\mathrm{NH}, 2} 8, \mathrm{~N} H\right)$, 5.87 (0.3 H , exch. d, $J_{\mathrm{NH}, 2} 8.8, \mathrm{NH}$), $5.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.09$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.50\left(0.7 \mathrm{H}, \mathrm{dt}, J_{2, \mathrm{NH}} 8.0, J_{2,3} 6.3, \mathrm{H}-2\right), 4.43$ $\left(0.3 \mathrm{H}, \mathrm{ddd}, J_{2, \mathrm{NH}} 8.8, J_{2,3 \mathrm{~A}} 4.0, J_{2,3 \mathrm{~B}} 10.8, \mathrm{H}-2\right), 3.48(0.6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}-6^{\prime}\right), 3.14\left(1.4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}\right), 2.97\left(0.9 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.89(2.1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 2.68(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.36\left(0.7 \mathrm{H}, \mathrm{dt}, J_{3 \mathrm{~B}, 2} 6.3, J_{3 \mathrm{~B}, 3 \mathrm{~A}} 14.5\right.$, $\mathrm{H}-3 \mathrm{~B}), 2.3(0.3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.92(0.3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$ and $1.88(0.7 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3 \mathrm{~A})$.

(2S,5' $\mathbf{R S}$)-2-Amino-3-(1-methyl-2,4-dioxohexahydropyrimidin-5-yl)propionic acid hydrochloride 32 and 33

Benzyl (2S,5' RS)-2-benzyloxycarbonylamino-3-(1-methyl-2,4-dioxohexahydropyrimidin-5-yl)propionate 30 and 31 (346 mg , 0.79 mmol) and 10% palladium on carbon $(40 \mathrm{mg})$ were stirred vigorously together in acetic acid (10 ml) in an atmosphere of hydrogen for 1 h at room temperature. The catalyst was removed by filtration through Celite and the solvent was removed in vacuo to yield a tan coloured oil. Trace acetic acid was removed by treatment with Dowex 1X8-400 anion exchange resin and elution with water. Elution with 2 M aqueous HCl and removal of excess acid in vacuo gave (2S,5' RS)-2-amino-(1-methyl-2,4-dioxohexahydropyrimidin-5yl) propionic acid hydrochloride 32 and 33 ($153 \mathrm{mg}, 90 \%$). The compound was present as two diastereoisomers in a ratio of ca. $3: 7$, which could not be separated; m / z (EI) Found: 215.08848. $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires 215.09061; m/z (+ve FAB, glycerol) $216\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz},{ }^{2} \mathrm{H}_{2} \mathrm{O}\right) 4.06(0.7 \mathrm{H}, \mathrm{t}$, $\left.J_{2,3} 6.4, \mathrm{H}-2\right), 4.03(0.3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 3.1-3.4(2 \mathrm{H}$, overlapping m, $\left.\mathrm{H}-6^{\prime}\right), 2.94\left(0.3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.85\left(0.7 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.75(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 2.23\left(0.7 \mathrm{H}, \mathrm{dt}, J_{3 \mathrm{~A}, 2} 7.5, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 14.4, \mathrm{H}-3 \mathrm{~A}\right), 2.02(0.3 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3 \mathrm{~A}), 1.92(0.3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~B})$ and $1.82(0.7 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~B})$; $\delta_{\mathrm{C}}\left(125.76 \mathrm{MHz},{ }^{2} \mathrm{H}_{2} \mathrm{O}\right.$, both isomers $) ~ 175.0,174.7,171.6,171.4$ and $154.6(5 \times \mathrm{CO}), 51.7$ and $51.3(2 \times \mathrm{C}-2), 48.75\left(\mathrm{C}-6^{\prime}\right), 37.53$ and $36.62(2 \times \mathrm{C}-5$) $), 34.86$ and $34.76\left(2 \times \mathrm{CH}_{3}\right)$, and 28.51 and 28.14 ($2 \times \mathrm{C}-3$).

Benzyl (2S,4RS)-N-benzyloxycarbonyl-4-[(1,3-dimethylthioureido)methyl]pyroglutamate 34 and 35

Benzyl $\quad(2 S, 4 R S)$ - N-benzyloxycarbonyl-4- N-methylaminomethylpyroglutamate $21(960 \mathrm{mg}, 2.4 \mathrm{mmol})$ and methyl isothiocyanate ($310 \mathrm{mg}, 4.2 \mathrm{mmol}$) were dissolved in dichloromethane (15 ml). After standing for 6 h at room temperature the solvent was removed in vacuo and the resultant oil was purified by flash chromatography on silica gel, eluting with 4.5% methanol in dichloromethane to yield benzyl ($2 S, 4 R S$)- N -benzyloxycarbonyl-4-[(1,3-dimethylthioureido) methyl]pyroglutamate 34 and 35 as a colourless foam ($818 \mathrm{mg}, 72 \%$). The two diastereoisomers were present in a ratio of ca. 3:7 as indicated by integration in the ${ }^{1} \mathrm{H}$ NMR spectrum, and could not be further separated (Found: C, 61.1; H, 5.8, N, 8.8. $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires C, $61.4 ; \mathrm{H}, 5.8 ; \mathrm{N}, 8.95 \%$); $m / z(+\mathrm{ve} \mathrm{FAB}, 3-\mathrm{NBA}) 470$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 7.27-7.45(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$, $5.84(0.7 \mathrm{H}$, exch. br, $\mathrm{N} H), 5.66(0.3 \mathrm{H}$, exch. br, $\mathrm{N} H), 5.21$
$\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.13\left(1.4 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.08(0.6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.70\left(0.7 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~B}} 1.3, J_{2,3 \mathrm{~B}} 9.3, \mathrm{H}-2\right), 4.63(0.3 \mathrm{H}$, $\left.\mathrm{dd}, J_{2,3 \mathrm{~B}} 5.9, J_{2,3 \mathrm{~A}} 9.3, \mathrm{H}-2\right), 4.32\left(0.7 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{~A}, 4} 4.9, J_{6 \mathrm{~A}, 6 \mathrm{~B}} 14.9\right.$, $\mathrm{H}-6 \mathrm{~A}), 4.31\left(0.3 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{~A}, 4} 4.9, J_{6 \mathrm{~A}, 6 \mathrm{~B}} 14.9, \mathrm{H}-6 \mathrm{~A}\right), 3.9(0.7 \mathrm{H}$, dd, $\left.J_{6 \mathrm{~A}, 4} 5.9, J_{6 \mathrm{~B}, 6 \mathrm{~A}} 14.9, \mathrm{H}-6 \mathrm{~B}\right), 3.4\left(0.3 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{~B}, 6 \mathrm{~A}} 14.9, J_{6 \mathrm{~B}, 4}\right.$ 6.8, H-6B), 3.07-3.36 ($7 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and NCH_{3}), $2.59(0.3 \mathrm{H}, \mathrm{dt}$, $\left.J 9.3, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 13.6, \mathrm{H}-3 \mathrm{~A}\right), 2.4\left(0.7 \mathrm{H}\right.$, ddd $, J_{3 \mathrm{~B}, 2} 1.3, J_{3 \mathrm{~B}, 4} 8.8, J_{3 \mathrm{~B}, 3 \mathrm{~A}}$ $13.6, \mathrm{H}-3 \mathrm{~A}), 2.3(0.7 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~B})$ and $2.03(0.3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$.

Benzyl ($2 S, 5^{\prime} \boldsymbol{S}$)- and ($2 S, 5^{\prime}$ R)-2-benzyloxycarbonylamino-3-(1,3-dimethyl-2-thioxo-4-oxohexahydropyrimidin-5-yl)propionate 36 and 37

Benzyl (2S,4RS)-N-benzyloxycarbonyl-4-[(1,3-dimethylthioureido)methyl]pyroglutamate 34 and 35 ($546 \mathrm{mg}, 1.1 \mathrm{mmol}$) were heated under an atmosphere of nitrogen to $110^{\circ} \mathrm{C}$ for 46 h . The resultant oil was purified by flash chromatography on silica gel, eluting with petroleum ether $\left(60-80^{\circ} \mathrm{C}\right)-\mathrm{Et}_{2} \mathrm{O}$ (15: 85) $(410 \mathrm{mg}, 75 \%)$. Partial separation of the diastereoisomers was achieved. Fractions containing pure samples of each diastereoisomer were further purified by recrystallisation from ethanol. The ratio of diastereoisomers in the crude product was unchanged from that of the precursor thioureas 34 and 35 , tentatively allowing us to assign the absolute configuration to each diastereoisomer. The major isomer, benzyl ($2 \mathrm{~S}, 5^{\prime} R$)-2-benzyloxycarbonylamino-3-(1,3-dimethyl-2-thioxo-4-oxohexahydropyrimidin-5-yl)propionate 36, was a solid, mp $130-131^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{23}-24\left(c 0.9, \mathrm{CHCl}_{3}\right)$ (Found: C, 61.3 ; H, 5.8 ; N, 8.9. $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires C, $61.4 ; \mathrm{H}, 5.8 ; \mathrm{N}, 8.95 \%$); $m / z(+\mathrm{ve}$ FAB, 3-NBA) $470\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1747$ (ester) and 1720 (urethane); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 215,250$ and $272(\log \varepsilon 3.97$, 3.72 and 3.87); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 7.30-7.47(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 5.62\left(1 \mathrm{H}\right.$, exch. d, $\left.J_{\mathrm{NH}, 2} 8.3, \mathrm{~N} H\right), 5.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right)$, $5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.45\left(1 \mathrm{H}\right.$, ddd, $J_{2, \mathrm{NH}} 8.3, J_{2,3 \mathrm{~A}} 10, J_{2,3 \mathrm{~B}}$ $4.2, \mathrm{H}-2), 3.79$ ($1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime} \mathrm{A}, 6^{\prime} \mathrm{B}} 12.8, J_{6^{\prime} \mathrm{A}, 5^{\prime}} 5.4, \mathrm{H}-6^{\prime} \mathrm{A}$), $3.51(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{NCH}_{3}\right), 3.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.42\left(1 \mathrm{H}, \mathrm{t}, J_{6^{\prime} \mathrm{B}, 6^{\prime} \mathrm{A}}, J_{6^{\prime} \mathrm{B}, 5^{\prime}} 12.8\right.$, $\left.\mathrm{H}-6^{\prime} \mathrm{B}\right), 2.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.31\left(1 \mathrm{H}\right.$, ddd, $J_{3 \mathrm{~B}, 2} 4.2, J_{3 \mathrm{~B}, 5^{\prime}} 9.4$, $\left.J_{3 \mathrm{~B}, 3 \mathrm{~A}} 13.9, \mathrm{H}-3 \mathrm{~B}\right)$ and $1.93\left(1 \mathrm{H}\right.$, ddd, $J_{3 \mathrm{~A}, 5^{\prime}} 4.3, J_{3 \mathrm{~A}, 2} 10, J_{3 \mathrm{~A}, 3 \mathrm{~B}}$ 13.9, H-3A). The structure of this compound was confirmed by single crystal X-ray diffraction analysis, reported in our preliminary communication, ${ }^{1}$ and atomic coordinate data were lodged with the Cambridge Crystallography Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW at that time. They are available on request from the Director of the CCDC at the above address, quoting CCDC reference code QENLUQ, CCDC number 153590.

The minor isomer, benzyl (2S,5'S)-2-benzyloxycarbonyl-amino-3-(1,3-dimethyl-2-thioxo-4-oxohexahydropyrimidin-yl)propionate 37, was a solid, mp $105-106{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{23}-11.5$ (c 1 , CHCl_{3}) (Found: C, 61.2; H, 5.8; N, 8.8. $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires C, $61.4 ; \mathrm{H}, 5.8 ; \mathrm{N}, 8.95 \%$); $m / z(+\mathrm{ve} \mathrm{FAB}, 3-\mathrm{NBA}) 470$ ([M + $\left.\mathrm{H}]^{+}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1747$ (ester) and 1720 (urethane); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 216,246$ and $271(\log \varepsilon 4.02,3.62$ and 3.66); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 7.27-7.41(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 5.74(1 \mathrm{H}$, exch. br d, $\left.J_{\mathrm{NH}, 2} 8, \mathrm{~N} H\right), 5.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.10(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.52\left(1 \mathrm{H}, \mathrm{ddd}, J_{2, \mathrm{NH}} 8, J_{2,3 \mathrm{~A}} 9.8, J_{2,3 \mathrm{~B}} 6, \mathrm{H}-2\right), 3.51$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.38\left(5 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{3}\right.$ and $\left.\mathrm{H}-6^{\prime}\right), 2.74(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}-5^{\prime}\right), 2.38\left(1 \mathrm{H}, \mathrm{dt}, J_{3 \mathrm{~B}, 2} 6, J_{3 \mathrm{~B}, 3 \mathrm{~A}} 14.5, \mathrm{H}-3 \mathrm{~B}\right)$ and $1.86(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3 \mathrm{~A}$); irradiation of the peak for $\mathrm{H}-2$ at 4.52 ppm changed peaks for NH at 5.74 ppm and $\mathrm{H}-3$ at 2.38 and 1.86 ppm ; $\delta_{\mathrm{C}}\left(125.76 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 180.8,171.1$ and $168.9(3 \times \mathrm{CO})$, 155.8 (urethane), 135.9 and $134.9(2 \times$ ipso $C), 178.6,128.4$, 128.4, 128.1 and $128.0(5 \times \mathrm{ArC}), 67.4$ and $67.0\left(2 \times \mathrm{ArCH}_{2}\right)$, $52.0(\mathrm{C}-2), 50.5\left(\mathrm{C}-6^{\prime}\right), 43.8\left(\mathrm{NCH}_{3}\right) 36.9\left(\mathrm{NCH}_{3}\right), 34.3\left(\mathrm{C}-5^{\prime}\right)$ and 30.2 (C-3).

Benzyl (2S)- N-benzyloxycarbonyl-4-ureidomethylpyroglutamate 38

Benzyl (2S)- N-benzyloxycarbonyl-4-aminomethylenepyroglutamate $\mathbf{1 4}$ ($117 \mathrm{mg}, 0.31 \mathrm{mmol}$), sodium cyanoborohydride
($23 \mathrm{mg}, 0.37 \mathrm{mmol}$) and screened methyl orange (1 drop) were dissolved in methanol (5 ml). 2 M Aqueous $\mathrm{HCl}(0.28 \mathrm{ml})$ was added dropwise with stirring at room temperature at such a rate as to keep the indicator at the neutral point until the indicator remained red following addition of acid. The solution was stirred for a further 2 min , and acetic acid $(1.5 \mathrm{ml})$ and potassium cyanate ($100 \mathrm{mg}, 1.2 \mathrm{mmol}$) were added. Stirring was continued until the potassium cyanate had dissolved and the solution was allowed to stand at room temperature for a further 18 h . The solution was concentrated to a small volume in vacuo, diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$ and extracted with ethyl acetate. The combined organic phases were washed with 10% aqueous citric acid. The combined aqueous acid washings were extracted with ethyl acetate. The combined organic phases were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed in vacuo to yield a colourless oil. This was purified by flash chromatography on silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (94: 6) to yield benzyl (2S)-N-benzyloxy-carbonyl-4-ureidomethylpyroglutamate $\mathbf{3 8}$ as a colourless oil ($75 \mathrm{mg}, 57 \%$) The compound was present as two diastereoisomers in a ratio of $c a .3: 7$ as indicated by integration in the ${ }^{1} \mathrm{H}$ NMR spectrum, and these could not be further separated; m / z (EI) Found: 425.16140. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires 425.15869); $m / z(+\mathrm{ve}$ FAB, $3-\mathrm{NBA}) 425\left([\mathrm{M}]^{+}\right)$and $851\left([2 \mathrm{M}+\mathrm{H}]^{+}\right)$; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1792$ (imide), 1746 (ester) and 1658 (urea); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}^{2} \mathrm{HCl}_{3}\right) 7.2-7.4(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.14(0.7 \mathrm{H}$, exch. t, $\left.J_{\mathrm{NH}, 2} 5.7, \mathrm{~N} H\right), 5.88\left(0.3 \mathrm{H}\right.$, exch. t , $\left.J_{\mathrm{NH}, 2} 6.5, \mathrm{NH}\right), 5.06-$ $5.25\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.95\left(1.4 \mathrm{H}, \mathrm{s}\right.$, exch. $\left.\mathrm{NH} \mathrm{H}_{2}\right), 4.81(0.6 \mathrm{H}, \mathrm{s}$, exch. $\left.\mathrm{N} H_{2}\right), 4.63\left(0.7 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~A}} 1.4, J_{2,3 \mathrm{~B}} 9.5, \mathrm{H}-2\right), 4.58(0.3 \mathrm{H}$, dd, $\left.J_{2,3 \mathrm{~A}} 7.0, J_{2,3 \mathrm{~B}} 9, \mathrm{H}-2\right), 3.56-3.38(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.84-2.72$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.54\left(0.3 \mathrm{H}, \mathrm{dt}, J_{3 \mathrm{~B}, 2} 9, J_{3 \mathrm{~B}, 3 \mathrm{~A}} 13.6, \mathrm{H}-3 \mathrm{~B}\right)$, $2.30\left(0.7 \mathrm{H}\right.$, ddd, $\left.J_{3 \mathrm{~B}, 2} 9, J_{3 \mathrm{~B}, 4} 12.0, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 13.6, \mathrm{H}-3 \mathrm{~A}\right), 2.20$ $\left(0.7 \mathrm{H}\right.$, ddd, $\left.J_{3 \mathrm{~A}, 2} 1.4, J_{3 \mathrm{~A}, 4} 9.0, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 13.6, \mathrm{H}-3 \mathrm{~A}\right)$ and 1.92 $\left(0.3 \mathrm{H}\right.$, ddd, $\left.J_{3 \mathrm{~B}, 2} 7, J_{3 \mathrm{~B}, 4} 8.4, J_{3 \mathrm{~A}, 3 \mathrm{~B}} 13.6, \mathrm{H}-3 \mathrm{~B}\right) ;{ }^{2} \mathrm{H}_{2} \mathrm{O}$ exchange changed the appearance of the H-6 multiplets at 3.38-3.56 ppm ; irradiation of the peaks for $\mathrm{H}-2$ at 4.63 ppm showed a change in appearance of all the $\mathrm{H}-3$ peaks upfield of 2.55 ppm .

Benzyl (2S,5' RS)-2-benzyloxycarbonylamino-3-(2,4-dioxohexa-hydropyrimidin-5-yl)propionate 39

Benzyl (2S)-N-benzyloxycarbonyl-4-ureidomethylpyroglutamate $38(35 \mathrm{mg}, 0.082 \mathrm{mmol})$ was heated in an atmosphere of argon at $122{ }^{\circ} \mathrm{C}$ for 41 h . The resultant oil was purified by flash chromatography on silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (95:5), to yield benzyl ($2 S, 5^{\prime} R S$)-2-benzyloxycarbonylamino-3-(2,4-dioxohexahydropyrimidin-5-yl) propionate 39 as a colourless oil ($18 \mathrm{mg}, 51 \%$). No separation of the diastereoisomers could be achieved; m / z (EI) Found: $425.15617 . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires $425.15869 ; v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1718$ (ester); $\delta_{\mathrm{H}}(360 \mathrm{MHz}$, $\left.\mathrm{C}^{2} \mathrm{HCl}_{3}\right) 8.57(1 \mathrm{H}$, exch. s, $\mathrm{N} H), 7.22-7.55(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$, $6.33(0.5 \mathrm{H}, \mathrm{br}$ s, exch. $\mathrm{N} H), 6.25(0.5 \mathrm{H}, \mathrm{br}$ s, exch. $\mathrm{N} H), 6.01$ $\left(0.5 \mathrm{H}\right.$, d, exch. $\left.J_{\mathrm{NH}, 2} 7.9, \mathrm{~N} H\right), 5.82\left(0.5 \mathrm{H}\right.$, exch d, $J_{\mathrm{NH}, 2} 8.5$, $\mathrm{N} H), 5.04-5.24\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.53(0.5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 4.45$ $(0.5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 3.50\left(0.5 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}\right), 3.22\left(0.5 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}\right), 3.12$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}$), $2.64\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.41-2.27(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$ and 1.96-1.80 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$) ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ exchange simplifed the multiplets at $4.53,4.45,3.50,3.22$ and 3.12 ppm ; irradiation of $\mathrm{H}-5^{\prime}$ at 2.64 ppm changed the appearance of all multiplets downfield of 3.5 ppm .
(2S,5' $R S$)-2-Amino-3-(2,4-dioxohexahydropyrimidin-5-yl)propionic acid 40
Benzyl ($2 S, 5^{\prime} R S$)-2-benzyloxycarbonylamino-3-(2,4-dioxo-hexahydropyrimidin-5-yl)propionate $39(15 \mathrm{mg}, 0.035 \mathrm{mmol})$ and 10% palladium on carbon $(6 \mathrm{mg})$ were mixed in acetic acid $(2 \mathrm{ml})$ and stirred vigorously in an atmosphere of hydrogen for 95 min at room temperature. The catalyst was removed by
filtration through Celite and the solvent was removed in vacuo to yield a colourless oil. This was triturated with methanol, and dried (high vacuum desiccator) to yield ($2 S, 5^{\prime} R S$)-2-amino-3-(2,4-dioxohexahydropyrimidin-5-yl) propionic acid 40 as a white solid ($4.8 \mathrm{mg}, 68 \%$); $\mathrm{mp} 200{ }^{\circ} \mathrm{C}$ (softens). No separation of the diastereoisomers was attempted; m / z (EI) Found: 201.06141. $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires 201.07496); m/z (+ ve FAB, thioglycerol) $202\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3250(\mathrm{NH}$ and OH$)$ and 1747 $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz},{ }^{2} \mathrm{H}_{2} \mathrm{O}\right) 3.73\left(0.5 \mathrm{H}, \mathrm{t}, J_{2,3} 5.85, \mathrm{H}-2\right), 3.64$ $\left(0.5 \mathrm{H}, \mathrm{dd}, J_{2,3 \mathrm{~A}} 5.7, J_{2,3 \mathrm{~B}} 8.1, \mathrm{H}-2\right), 3.3\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}\right), 3.04-3.12$ ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}\right), 2.79\left(0.5 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.64\left(0.5 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.13$ $(0.5 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.98(0.5 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$ and $1.85-1.73(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 3); irradiation at the multiplet for $\mathrm{H}-5^{\prime}$ at 2.79 ppm showed a change in multiplets for H-4' and H-3 at 3.30, 3.08, 1.98 and 1.84 ppm ; irradiation at the multiplet for $\mathrm{H}-5^{\prime}$ at 2.64 ppm showed a change in multiplets for $\mathrm{H}-4^{\prime}$ and $\mathrm{H}-3$ at $3.30,3.08$, 2.13 and 1.78 ppm ; irradiation at the $\mathrm{H}-2$ dd at 3.64 ppm showed a change in multiplets for $\mathrm{H}-3$ at 1.98 and 1.84 ppm ; irradiation at the t for $\mathrm{H}-2$ at 3.73 ppm showed a change in the multiplets for $\mathrm{H}-3$ at 2.13 and 1.78 ppm .

Acknowledgements

We thank the EPSRC and GlaxoWellcome for a CASE studentship (to A. D.).

References

1 Part of this work has been published in preliminary form in A. Dinsmore, P. M. Doyle, P. B. Hitchcock and D. W. Young, Tetrahedron Lett., 2000, 41, 10153.
2 R. J. Bridges, J. W. Geddes, D. T. Monaghan and C. W. Cotman, in Excitatory Amino Acids in Health and Disease, ed. D. Lodge, Wiley, New York, 1988, p. 321.
3 S. Patel, A. G. Chapman, M. H. Millan and B. S. Meldrum, in Excitatory Amino Acids in Health and Disease, ed. D. Lodge, Wiley, New York, 1988, p. 353.
4 G. K. Steinberg, J. Saleh, D. Kunis, R. DeLaPaz and S. R. Zarnegar, Stroke, 1989, 20, 1247.
5 See T. A. Johansen, K. Frydenvang, B. Ebert, P. Krogsgaard-Larsen and U. Masden, J. Med. Chem., 1994, 37, 3252 and references cited therein.
6 A. N. Bowler, A. Dinsmore, P. M. Doyle and D. W. Young, J. Chem. Soc., Perkin Trans. 1, 1997, 1297.
7 R. H. Evans, A. W. Jones and J. C. Watkins, J. Physiol., 1980, 308, 71P.
8 H. Sugiyama, M. Watanabe, H. Taji, Y. Yamamoto and I. Ito, Neurosci. Res., 1989, 7, 164.
9 S. Hunt, in Chemistry and Biochemistry of the Amino Acids, ed. G. C. Barrett, Chapman and Hall, London, 1985, p. 55.
10 R. A. August, J. A. Khan, C. M. Moody and D. W. Young, J. Chem. Soc., Perkin Trans. 1, 1996, 507.
11 The X-ray structural data were reported in our preliminary communication (ref. 1).
12 S. J. East and J. Garthwaite, Eur. J. Pharmacol., 1992, 219, 395.

